Integrated Framework to Study Efficient Spectral Estimation Techniques for Assessing Spectral Efficiency Analysis

نویسنده

  • Kantipudi MVV Prasad
چکیده

The advanced network applications enable software driven spectral analysis of non-stationary signal or processes which precisely involves domain analysis with the purpose of decomposing a complex signal coefficients into simpler forms. However, the proper estimation of power coefficients over frequency components of a random signal leads to provide very useful information required in various fields of study. The complex design constraints associated with conventional parametric models such as Dynamic Average Model, Autoregressive MA, etc. for multidimensional spectral estimation using adaptive filters leads to a situation where higher computational complexities generate significant overhead on the systems. Therefore, the proposed study aims to formulate an efficient framework intended to derive a fast algorithm for processing Adaptive Capon and Phase Estimator (APES). The proposed method is applied to a non-stationary signal which is random. Further, the adaptive estimation of power spectra along with more accurate spectral efficiency has been identified in case of APES. An extensive performance evaluation followed by a comparative analysis has been performed by obtaining the values from different spectral estimation techniques, such as APES, PSC, ASC, and CAPON. Moreover, the framework ensures that unlike others, APES is subjected to attain superior signal quality regarding Power Spectral Density (PSD) and Signal to Noise Ratio (SNR) while achieving very less amount of Mean Square Error (MSE). It also exhibits comparatively low convergence speed and computational complexity as compared to its legacy versions. Keywords—Amplitude and phase estimation; ASC; capon spectral estimator; spectral estimation; PSC

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Squares Techniques for Extracting Water Level Fluctuations in the Persian Gulf and Oman Sea

Extracting the main cyclic fluctuations from sea level changes of the Persian Gulf and Oman Sea is vital for understanding the behavior of tides and isolating non-tidal impacts such as those related to climate and changes in the ocean-sea circulations. This study compares two spectral analysis methods including: Least Squares Spectral Analysis (LSSA) and Least Squares Harmonic Estimation (LSHE)...

متن کامل

Spectral Estimation of Stationary Time Series: Recent Developments

Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

SPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation

Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017